Gap junction plasticity as a mechanism to regulate network-wide oscillations
نویسندگان
چکیده
Cortical oscillations are thought to be involved in many cognitive functions and processes. Several mechanisms have been proposed to regulate oscillations. One prominent but understudied mechanism is gap junction coupling. Gap junctions are ubiquitous in cortex between GABAergic interneurons. Moreover, recent experiments indicate their strength can be modified in an activity-dependent manner, similar to chemical synapses. We hypothesized that activity-dependent gap junction plasticity acts as a mechanism to regulate oscillations in the cortex. We developed a computational model of gap junction plasticity in a recurrent cortical network based on recent experimental findings. We showed that gap junction plasticity can serve as a homeostatic mechanism for oscillations by maintaining a tight balance between two network states: asynchronous irregular activity and synchronized oscillations. This homeostatic mechanism allows for robust communication between neuronal assemblies through two different mechanisms: transient oscillations and frequency modulation. This implies a direct functional role for gap junction plasticity in information transmission in cortex.
منابع مشابه
Gap junction plasticity can lead to spindle oscillations
Patterns of waxing and waning oscillations, called spindles, are observed in multiple brain regions during sleep. Spindle are thought to be involved in memory consolidation. The origin of spindle oscillations is ongoing work but experimental results point towards the thalamic reticular nucleus (TRN) as a likely candidate. The TRN is rich in electrical synapses, also called gap junctions, which ...
متن کاملSpatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex.
We used a 60-channel microelectrode array to study in thick (600-1000 microm) somatosensory cortical slices from postnatal day (P)0-P3 mice the spatio-temporal properties of early network oscillations. We recorded local non-propagating as well as large-scale propagating spontaneous oscillatory activity. Both types of activity patterns could never be observed in neocortical slices of conventiona...
متن کاملImpaired Electrical Signaling Disrupts Gamma Frequency Oscillations in Connexin 36-Deficient Mice
Neural processing occurs in parallel in distant cortical areas even for simple perceptual tasks. Associated cognitive binding is believed to occur through the interareal synchronization of rhythmic activity in the gamma (30-80 Hz) range. Such oscillations arise as an emergent property of the neuronal network and require conventional chemical neurotransmission. To test the potential role of gap ...
متن کاملIntrinsic Connectivity of the Claustrum: Gap Junctions Demonstrated by Immunohistochemistry and Electron Microscopy
The claustrum is a much neglected nucleus in the brain, whose function remains unknown to date. Yet, based on the extensive reciprocal connections it shares with virtually all functional regions of cortex, it most likely serves a far from meaningless purpose. Current hypotheses propose a role in perceptual binding by synchronization of cortical activity. These hypotheses come with a number of a...
متن کاملIntracerebroventricular Injection of Lipopolysaccharide Increases Gene Expression of Connexin32 Gap Junction in Rat Hippocampus
Introduction: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx). Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of vario...
متن کامل